ОБЩАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ А. ЭЙНШТЕЙНА

В рамках теории, которая создавалась в течение десяти лет, с 1906 по 1916 год, А. Эйнштейн обратился к проблеме тяготения, давно привлекавшей к себе внимание ученых. Поэтому общую теорию относительности часто еще называют теорией тяготения. В ней были описаны новые зависимости пространственно-временных отношений от материальных процессов. Эта теория основывается уже не на двух, а на трех постулатах:

- Первый постулат общей теории относительности - расширенный принцип относительности , который утверждает инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных, движущихся с ускорением или замедлением. Он говорит о том, что нельзя приписывать абсолютный характер не только скорости, но и ускорению, которое имеет конкретный смысл по отношению к фактору, его определяющему.

- Второй постулат - принцип постоянства скорости света - остается неизменным.

- Третий постулат - принцип эквивалентности инертной и гравитационной масс . Этот факт был известен еще в классической механике. Так, в законе всемирного тяготения, сформулированном Ньютоном, сила тяготения всегда пропорциональна массе того тела, на которое она действует. Но во втором законе Ньютона сила, сообщающая телу ускорение, тоже пропорциональна его массе. В первом случае речь идет о гравитационной массе, которая характеризует способность тела притягиваться к другому телу, во втором случае - об инертной массе, которая характеризует поведение тела под действием внешних сил, является мерой инертности тела. Но в случае свободного падения тела ускорение g = 9,8 м/с 2 не зависит от массы. Это установил в своих опытах еще Галилей. Более точно эквивалентность этих масс была установлена в 1890 г. венгерским физиком Л. Этвёшем. Сегодня эти выводы подтверждены с высокой степенью точности - до 10 -12 .

После создания специальной теории относительности Эйнштейн задумался о том, меняются ли гравитационные свойства тел, если их инерционные свойства зависят от скорости движения. Теоретический анализ, проведенный ученым, позволил сделать вывод, что физика не знает способа отличить эффект гравитации от эффекта ускорения. Иначе говоря, кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g , то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли. Аналогично, наблюдатель, находящийся в закрытом лифте, не сможет определить, движется ли лифт ускоренно или внутри лифта действуют силы тяготения. Именно на основе принципа эквивалентности был обобщен принцип относительности.

Важнейшим выводом общей теории относительности стала идея, что изменение геометрических (пространственных) и временных характеристик тел происходит не только при движении с большими скоростями, как это было доказано специальной теорией относительности, но и в сильных гравитационных полях. Сделанный вывод неразрывно связывал общую теорию относительности с геометрией, но общепризнанная геометрия Евклида для этого не годилась.

Геометрия Евклида носит аксиоматический характер, исходит из пяти аксиом и подразумевает одинаковость, однородность пространства, которое считается плоским. Но постепенно многих математиков эта геометрия перестала удовлетворять, так как пятый постулат ее не был самоочевидным. Речь идет об утверждении, что через точку, лежащую вне прямой, можно провести только одну прямую, параллельную данной. С этой аксиомой связано утверждение о сумме углов треугольника, всегда равной 180°. Если заменить эту аксиому другой, то можно построить новую геометрию, отличную от геометрии Евклида, но столь же внутренне непротиворечивую. Именно это и сделали в XIX веке независимо друг от друга русский математик Н. И. Лобачевский, немец Б. Риман и венгр Я. Больяй. Риман использовал аксиому о невозможности проведения даже единственной прямой, параллельной данной. Лобачевский и Больяй исходили из того, что через точку вне прямой можно провести бесчисленное множество прямых, параллельных данной. На первый взгляд эти утверждения звучат абсурдно. На плоскости они и в самом деле неверны. Но ведь могут существовать и иные поверхности, на которых имеют место новые постулаты.

Представьте себе, например, поверхность сферы. На ней кратчайшее расстояние между двумя точками отсчитывается не по прямой (на поверхности сферы прямых нет), а по дуге большого круга (так называют окружности, радиусы которых равны радиусу сферы). На земном шаре подобными кратчайшими, или, как их называют, геодезическими линиями служат меридианы. Все меридианы, как известно, пересекаются в полюсах, и каждый из них можно считать прямой, параллельной любому меридиану. На сфере выполняется своя, сферическая геометрия, в которой верно утверждение, что сумма углов треугольника всегда больше 180°. Представьте себе на сфере треугольник, образованный двумя меридианами и дугой экватора. Углы между меридианами и экватором равны 90°, и к их сумме прибавляется угол между меридианами с вершиной в полюсе. На сфере, таким образом, нет непересекающихся прямых.

Существуют также поверхности, для которых оказывается верным постулат Римана. Это седловидная поверхность, также называемая псевдосферой. На ней сумма углов треугольника всегда меньше 180° и невозможно провести ни одной прямой, параллельной данной.

После того, как Эйнштейн узнал о существовании этих геометрий, возникли сомнения в евклидовом характере реального пространства-времени. Стало ясно, что оно искривлено. Как можно представить себе искривление пространства, о котором говорит общая теория относительности? Представим себе очень тонкий лист резины и будем считать, что это модель пространства. Расположим на этом листе большие и маленькие шарики - модели звезд и планет. Шарики будут прогибать лист резины тем больше, чем больше их масса, что наглядно демонстрирует зависимость кривизны пространства-времени от массы тела. Так, Земля создает вокруг себя искривленное пространство-время, которое называется полем тяготения. Именно оно заставляет все тела падать на Землю. Но чем дальше мы будем находиться от планеты, тем слабее будет действие этого поля. На очень большом расстоянии поле тяготения будет настолько слабым, что тела перестанут падать на Землю, и потому искривление пространства-времени будет настолько незначительным, что им можно пренебречь и считать пространство-время плоским.

Под кривизной пространства не нужно понимать искривление плоскости наподобие евклидовой сферы, в которой внешняя поверхность отлична от внутренней. Изнутри ее поверхность выглядит вогнутой, извне - выпуклой. С точки зрения неевклидовых геометрий обе стороны искривленной плоскости являются одинаковыми. Кривизна пространства не проявляется наглядным образом и понимается как отступление его метрики от евклидовой, что можно точно описать на языке математики.

Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца, достаточно небольшой по космическим меркам звезды, влияет на темп протекания времени, замедляя его вблизи себя. Поэтому, если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет больше времени, чем в том случае, когда на пути этого сигнала Солнца не будет. Задержка сигнала при его прохождении вблизи Солнца составляет около 0,0002 с. Такие эксперименты проводились, начиная с 1966 г. В качестве отражателя использовались как поверхности планет (Меркурия, Венеры), так и оборудование межпланетных станций.

Одно из самых фантастических предсказаний общей теории относительности - полная остановка времени в очень сильном поле тяготения . Замедление времени тем больше, чем сильнее тяготение. Замедление времени проявляется в гравитационном красном смещении света: чем сильнее тяготение, тем больше увеличивается длина волны и уменьшается его частота. При определенных условиях длина волны может устремиться к бесконечности, а его частота - к нулю.

Со светом, испускаемым Солнцем, это могло бы случиться, если бы наше светило вдруг сжалось и превратилось в шар с радиусом в 3 км или меньше (радиус Солнца равен 700000 км). Из-за такого сжатия сила тяготения на поверхности, откуда исходит свет, возрастет настолько, что гравитационное красное смещение окажется действительно бесконечным. Солнце просто станет невидимым, ни один фотон не вылетит за его пределы.

Сразу скажем, что с Солнцем этого никогда не произойдет. В конце своего существования, через несколько миллиардов лет, оно испытает множество превращений, его центральная область может значительно сжаться, но все же не так сильно. Но другие звезды, массы которых в три и более раз превышают массу Солнца, в конце своей жизни и вправду испытают, скорее всего, быстрое катастрофическое сжатие под действием своего собственного тяготения. Это приведет их к состоянию черной дыры.

Черная дыра - это физическое тело, создающее столь сильное тяготение, что красное смещение для света, испускаемого вблизи него, способно обратиться в бесконечность . Чтобы возникла черная дыра, тело должно сжаться до радиуса, не превосходящего отношения массы тела к массе Солнца, умноженного на 3 км. Это критическое значение радиуса называют гравитационным радиусом тела.

Физики и астрономы совершенно уверены, что черные дыры существуют в природе, хотя до сих пор их не удалось обнаружить. Трудности астрономических поисков связаны с самой природой этих необычных объектов. Ведь их просто не видно, так как они не светят, ничего не излучают в пространство и потому в полном смысле этого слова являются черными. Лишь по ряду косвенных признаков можно надеяться заметить черную дыру, например, в системе двойной звезды, где ее партнером была бы обычная звезда. Из наблюдений движения видимой звезды в общем поле тяготения такой пары можно было бы оценить массу невидимой звезды, и если эта величина превысит массу Солнца в три и более раз, можно будет утверждать, что нашли черную дыру. Сейчас имеется несколько хорошо изученных систем двойных звезд, в которых масса невидимого партнера оценивается в 5-8 масс Солнца. Скорее всего, это и есть черные дыры, но астрономы до уточнения этих оценок предпочитают называть эти объекты кандидатами в черные дыры.

Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи нейтронных звезд, а у гравитационного радиуса черной дыры оно столь велико, что время там, с точки зрения внешнего наблюдателя, просто замирает. Для тела, попадающего в поле тяготения черной дыры массой, равной трем массам Солнца, падение с расстояния 1 млн. км до гравитационного радиуса займет всего около часа. Но по часам, которые будут находиться вдали от черной дыры, свободное падение тела в ее поле растянется во времени до бесконечности. Чем ближе падающее тело будет подходить к гравитационному радиусу, тем более замедленным будет представляться этот полет удаленному наблюдателю. Тело, наблюдаемое издалека, будет бесконечно долго приближаться к гравитационному радиусу и никогда не достигнет его. А на определенном расстоянии от этого радиуса тело навсегда застывает - для внешнего наблюдателя остановилось время, подобно тому, как на стоп-кадре виден застывший момент падения тела.

Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна, на сегодняшний день являются наиболее последовательными. Но они являются макроскопическими, так как опираются на опыт исследования макроскопических объектов, больших расстояний и больших промежутков времени. При построении теорий, описывающих явления микромира, эта геометрическая картина, предполагающая непрерывность пространства и времени (пространственно-временной континуум) была перенесена на новую область без каких-либо изменений. Экспериментальных данных, противоречащих применению теории относительности в микромире, пока нет. Но само развитие квантовых теорий, возможно, потребует пересмотра представлений о физическом пространстве и времени.

Уже сейчас некоторые ученые говорят о возможности существования кванта пространства, фундаментальной длины L. Введя это понятие, наука сможет избежать многих трудностей современных квантовых теорий. Если существование этой длины подтвердится, она станет еще одной фундаментальной постоянной в физике. Из существования кванта пространства также вытекает существование кванта времени, равного L/C, ограничивающего точность определения временных интервалов.

Общая теория относительности рассматривает неинерциальные системы отсчета и утверждает возможность их отождествления с инерциальными (при наличии поля тяготения). Эйнштейн формулирует суть главного принципа этой теории следующим образом: "Все системы отсчета равноценны для описания природы (формулировки общих ее законов), в каком бы состоянии движения они не находились". Точнее говоря, общий принцип относительности говорит о том, что любой закон физики одинаково истинен и применим и в неинерциальных системах отсчета при наличии поля тяготения, и в инерциальных системах отсчета, но при его отсутствии.

Следствия из общей теории относительности:

1. Равенство инертной и гравитационной массы - один из важных результатов ОТО, которая считает равноценными все системы отсчета, а не только инерциальные.

2. Искривление светового луча в поле тяготения свидетельствует, что скорость света в таком поле не может быть постоянной, а изменяется по направлению от одного места к другому.

3. Поворот эллиптической орбиты планет, движущихся вокруг Солнца (например, у Меркурия - 43° за столетие).

4. Замедление времени в поле тяготения массивных или сверхплотных тел.

5. Изменение частоты света при его движении в гравитационном поле.

Наиболее значительным результатом ОТО является установление зависимости пространственно-временных свойств окружающего мира от расположения и плотности тяготеющих масс.

В заключение заметим, что ряд выводов общей теории относительности качественно отличается от выводов ньютоновской теории тяготения. Важнейшие из них связаны с существованием черных дыр, сингулярностей пространства-времени (мест, где формально, по теории, обрывается существование частиц и полей в обычной известной нам форме) и с наличием гравитационных волн (гравитационного излучения). Ограничения общей теории тяготения Эйнштейна обусловлены тем, что эта теория не квантовая; а гравитационные волны можно рассматривать как поток специфических квантов - гравитонов.

Других ограничений применимости теории относительности не обнаружено, хотя неоднократно высказывались предположения, что на очень малых расстояниях понятие точечного события, следовательно, и теория относительности могут оказаться неприменимыми. Современные квантовые теории фундаментальных взаимодействий (электромагнитная, слабого и сильного взаимодействий) основаны именно на геометрии пространства-времени теории относительности. Из этих теорий с наиболее высокой точностью проверена квантовая электродинамика лептонов. Неоднократно с высокой точностью повторялись опыты, использовавшиеся для обоснования теории относительности в первые десятилетия ее существования. Сейчас такого рода опыты имеют преимущественно исторический интерес, поскольку основной массив подтверждений общей теории относительности составляют данные, относящиеся к взаимодействиям релятивистских элементарных частиц.

ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ , теория, предложенная Альбертом ЭЙНШТЕЙНОМ, основанная на постулате, что движение одного тела можно определить только относительно движения другого тела. Это привело к понятию четырехмерного ПРОСТРАНСТВЕННО-ВРЕМЕННОГО континуума, в котором три пространственных измерения и время рассматриваются на одинаковом основании. Специальная теория, выдвинутая в 1905 г., ограничивается описанием событий, как они происходят для наблюдателей в состоянии равномерного относительного движения. Наиболее важные следствия из этой теории такие: (1) скорость света постоянна для всех наблюдателей; (2) масса тела увеличивается с увеличением скорости, хотя это ощутимо лишь на скоростях, приближающихся к скорости света; (3) масса (т) и энергия (Е) равнозначны/эквивалентны, то есть Е=тс 2 , где с - скорость света (это показывает, что масса переходит в энергию, маленькая масса порождает очень большую энергию); (4) СЖАТИЕ ЛОРЕНЦА-ФИЦДЖЕРАЛЬДА, то есть тела сжимаются при увеличении скорости, ощутимо только, если приближаются к скорости света; (5) относительно неподвижного наблюдателя время течет медленнее для движущегося объекта, «расширение времени». Общая теория, завершенная в 1915 г. применима к наблюдателям, находящимся не в равномерном относительном движении (а в ускоряющемся). Это показало зависимость пространства и ГРАВИТАЦИИ. Можно выдвинуть идею, что наличие МАТЕРИИ в пространстве заставляет его «искривляться», образуя ГРАВИТАЦИОННЫЕ ПОЛЯ, таким образом гравитация становится свойством самого пространства. Свет тоже изгибается под действием массивных гравитационных полей, что может объяснить существование ЧЕРНЫХ ДЫР. см. также ПРОСТРАНСТВО -ВРЕМЯ .

Теории относительности Эйнштейна основываются на постулате, что движение одного тела можно определить только относительно движения другого тела. Например, (А) показывает как неподвижный наблюдатель видит красную машину, движущуюся со скоростью 90 миль/час и синюю машину на скорости 70 миль/час для синей машины. Однако, красная машина движется со скоростью 20 миль/час относительно нее Дальнейшие следствия из теории относительности показывают, что скорость света является абсолютной. В (В), даже если супермашина пере двигается на сотни миль/час быстрее, скорость света, излучаемого фарами обеих машин идентична, 186000 миль/сек. Ядерные взрывы (С) демонстрируют, что масса (т) и энергия(Е)равнозначны, то есть Е=гпс2. Ма ленькая масса может производить огромные количества энергии. (D)показывает, что масса тела, приближающегося к скорости света, увеличивается, в то время как само тело сжимается. Наконец (Е) демонстрирует..расширение времени^ Мю-мезоны космических лучей нестабильны, и в состоянии покоя распадаются за две наносекунды. Таким образом они должны проникать в атмосферу Земли только на приблизительно 600 метров перед их распадом Однако мю-мезоны были об наружены в пузырьковых камерах (F) на 10 км ниже уровня моря. Согласно теории относительности, для объектов, чья скорость близка к скорости света, время течет мед леннее. Наблюдателям на Земле поэтому кажется, что быстродвижущийся мю-мезон живет дольше, чем неподвижный.


Научно-технический энциклопедический словарь .

Смотреть что такое "ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ" в других словарях:

    - (см. ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    теория относительности - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN theory of relativity … Справочник технического переводчика

    ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ - физическая теория, основной смысл которой состоит в утверждении: в физическом мире все происходит благодаря структуре пространства и изменению его кривизны. Различают частную и общую теорию относительности. В основе частной теории,… … Философия науки: Словарь основных терминов

    теория относительности - reliatyvumo teorija statusas T sritis fizika atitikmenys: angl. relativity theory vok. Relativitätstheorie, f rus. теория относительности, f pranc. théorie de la relativité, f … Fizikos terminų žodynas

    См. Относительности теория. Философская Энциклопедия. В 5 х т. М.: Советская энциклопедия. Под редакцией Ф. В. Константинова. 1960 1970 … Философская энциклопедия

    См. Относительности теория … Большая советская энциклопедия

    Теория относительности The Outer Limits: Relativity Theory Жанр фантастика … Википедия

    Теория относительности Эйнштейна - физическая теория, рассматривающая пространственно временные свойства физических процессов. Эти свойства зависят от полей тяготения в данной области пространства времени. Теория, описывающая свойства пространства времени в приближении, когда… … Концепции современного естествознания. Словарь основных терминов

    - … Википедия

Книги

  • Теория относительности , Румер Ю.Б.. В настоящей книге изложены основные положения и результаты теории относительности, а также важнейшие ее приложения (квантовая теория света, некоторые вопросы теории ускорителей, энергетика…

СТО, ТОЭ - под этими аббревиатурами скрывается знакомый практически всем термин "теория относительности". Простым языком можно объяснить все, даже высказывание гения, так что не отчаивайтесь, если не помните школьный курс физики, ведь на самом деле все гораздо проще, чем кажется.

Зарождение теории

Итак, начнем курс "Теория относительности для чайников". Альберт Эйнштейн опубликовал свою работу в 1905 году, и она вызвала резонанс среди ученых. Эта теория практически полностью перекрывала многие пробелы и нестыковки в физике прошлого века, но и, ко всему прочему, перевернула представление о пространстве и времени. Во многие утверждения Эйнштейна современникам было сложно поверить, но эксперименты и исследования только подтверждали слова великого ученого.

Теория относительности Эйнштейна простым языком объясняла то, над чем люди бились столетиями. Ее можно назвать основой всей современной физики. Однако прежде чем продолжить разговор о теории относительности, следует разъяснить вопрос о терминах. Наверняка многие, читая научно-популярные статьи, сталкивались с двумя аббревиатурами: СТО и ОТО. На самом деле они подразумевают несколько разные понятия. Первая - это специальная теория относительности, а вторая расшифровывается как "общая теория относительности".

Просто о сложном

СТО - это более старая теория, которая потом стала частью ОТО. В ней могут быть рассмотрены только физические процессы для объектов, движущихся с равномерной скоростью. Общая же теория может описать, что происходит с ускоряющимися объектами, а также объяснить, почему существуют частицы гравитонов и гравитация.

Если нужно описать движение и а также отношения пространства и времени при приближении к скорости света - это сможет сделать специальная теория относительности. Простыми словами можно объяснить так: к примеру, друзья из будущего подарили вам космолет, который может летать на высокой скорости. На носу космического корабля стоит пушка, способная расстрелять фотонами все, что попадется впереди.

Когда производится выстрел, то относительно корабля эти частицы летят со скоростью света, но, по логике, неподвижный наблюдатель должен увидеть сумму двух скоростей (самих фотонов и корабля). Но ничего подобного. Наблюдатель увидит фотоны, движущиеся со скоростью 300000 м/с, будто скорость корабля была нулевой.

Все дело в том, что как бы быстро ни двигался объект, скорость света для него является неизменной величиной.

Это утверждение является основной поразительных логических выводов вроде замедления и искажения времени, зависящих от массы и скорости объекта. На этом основаны сюжеты многих научно-фантастических фильмов и сериалов.

Общая теория относительности

Простым языком можно объяснить и более объемную ОТО. Для начала следует принять во внимание тот факт, что наше пространство четырехмерное. Время и пространство объединяются в таком "предмете", как "пространственно-временной континуум". В нашем пространстве имеются четыре оси координат: х, у, z и t.

Но люди не могут воспринимать непосредственно четыре измерения, так же, как гипотетический плоский человек, живущих в двухмерном мире, не в состоянии посмотреть вверх. По сути, наш мир является только проекцией четырехмерного пространства в трехмерное.

Интересным фактом является то, что, согласно общей теории относительности, тела не меняются при движении. Объекты четырехмерного мира на самом деле всегда неизменны, и при движении изменяются только их проекции, что мы и воспринимаем как искажение времени, сокращение или увеличение размеров и прочее.

Эксперимент с лифтом

О теории относительности простым языком можно рассказать с помощью небольшого мысленного эксперимента. Представьте, что вы в лифте. Кабинка пришла в движение, и вы оказались в состоянии невесомости. Что произошло? Причины может быть две: либо лифт находится в космосе, либо пребывает в свободном падении под действием гравитации планеты. Самое интересное состоит в том, что выяснить причину невесомости нельзя, если нет возможности выглянуть из кабинки лифта, то есть оба процесса выглядят одинаково.

Возможно, проведя похожий мысленный эксперимент, Альберт Эйнштейн пришел к выводу, что если эти две ситуации неотличимы друг от друга, значит, на самом деле тело под воздействием гравитации не ускоряется, это равномерное движение, которое искривляется под воздействием массивного тела (в данном случае планеты). Таким образом, ускоренное движение - это лишь проекция равномерного движения в трехмерное пространство.

Наглядный пример

Еще один хороший пример на тему "Теория относительности для чайников". Он не совсем корректен, зато очень прост и нагляден. Если на натянутую ткань положить какой-либо объект, он образует под собой "прогиб", "воронку". Все меньшие тела вынуждены будут искажать свою траекторию согласно новому изгибу пространства, а если у тела немного энергии, оно вообще может не преодолеть этой воронки. Однако с точки зрения самого движущегося объекта, траектория остается прямой, они не почувствуют изгиба пространства.

Гравитация "понижена в звании"

С появлением общей теории относительности гравитация перестала быть силой и теперь довольствуется положением простого следствия искривления времени и пространства. ОТО может показаться фантастичной, однако является рабочей версией и подтверждается экспериментами.

Множество, казалось бы, невероятных в нашем мире вещей может объяснить теория относительности. Простым языком такие вещи называют следствиями ОТО. Например, лучи света, пролетающие на близком расстоянии от массивных тел, искривляются. Более того, многие объекты из далекого космоса скрыты друг за другом, но из-за того, что лучи света огибают другие тела, нашему взору (точнее, взору телескопа) доступны, казалось бы, невидимые объекты. Это ведь все равно, что смотреть сквозь стены.

Чем больше гравитация, тем медленнее на поверхности объекта течет время. Это касается не только массивных тел вроде нейтронных звезд или черных дыр. Эффект замедления времени можно наблюдать даже на Земле. К примеру, приборы для спутниковой навигации снабжены точнейшими атомными часами. Они находятся на орбите нашей планеты, и время там тикает чуть быстрее. Сотые доли секунды через сутки сложатся в цифру, которая даст до 10 км погрешности в расчетах маршрута на Земле. Рассчитать эту погрешность позволяет именно теория относительности.

Простым языком можно выразиться так: ОТО лежит в основе многих современных технологий, и благодаря Эйнштейну мы легко можем найти в незнакомом районе пиццерию и библиотеку.

Кто бы мог подумать, что мелкий почтовый служащий изменит основы науки своего времени? Но такое случилось! Теория относительности Эйнштейна заставила пересмотреть привычный взгляд на устройство Вселенной и открыла новые области научного познания.

Большинство научных открытий сделано с помощью эксперимента: ученые повторяли свои опыты много раз, чтобы быть уверенными в их результатах. Работы обычно проводились в университетах или исследовательских лабораториях больших компаний.

Альберт Эйнштейн полностью изменил научную картину мира, не проведя ни одного практического эксперимента. Его единственными инструментами были бумага и ручка, а все эксперименты он проводил в голове.

Движущийся свет

(1879—1955) основывал все свои выводы но результатах «мысленного эксперимента». Эти эксперименты можно было совершить только в воображении.

Скорости всех движущихся тел относительны. Это означает, что все объекты движутся или остаются неподвижными только относительно какого-либо другого объекта. Например, человек, неподвижный относительно Земли, в то же время вращается вместе с Землей вокруг Солнца. Или допустим, что по вагону движущегося поезда идет человек в сторону движения со скоростью 3 км/час. Поезд движется со скоростью 60 км/час. Относительно неподвижного наблюдателя на земле скорость человека будет равна 63 км/час - скорость человека плюс скорость поезда. Если бы он шел против движения, то его скорость относительно неподвижного наблюдателя была бы равна 57 км/час.

Эйнштейн утверждал, что о скорости света так рассуждать нельзя. Скорость света всегда постоянна , независимо от того, приближается ли источник света к вам, удаляется от вас или стоит на месте.

Чем быстрее, тем меньше

С самого начала Эйнштейн выдвинул несколько удивительных предположений. Он утверждал, что, если скорость объекта приближается к скорости света, его размеры уменьшаются, а масса, наоборот, увеличивается. Никакое тело нельзя разогнать до скорости равной или большей скорости света.

Другой его вывод был еще удивительней и, казалось, противоречил здравому смыслу. Представьте, что из двоих близнецов один остался на Земле, а другой путешествовал по космосу со скоростью, близкой к скорости света. С момента старта на Земле прошло 70 лет. Согласно теории Эйнштейна, на борту корабля время течет медленнее, и там прошло, например, только десять лет. Получается, что тот из близнецов, кто оставался на Земле, стал на шестьдесят лет старше второго. Этот эффект называют «парадоксом близнецов ». Звучит просто невероятно, но лабораторные эксперименты подтвердили, что замедление времени при скоростях, близких к скорости света, действительно существует.

Беспощадный вывод

Теория Эйнштейна также включает известную формулу E=mc 2 , в которой E - энергия, m - масса, а c - скорость света. Эйнштейн утверждал, что масса может превращаться в чистую энергию. В результате применения этого открытия в практической жизни появились атомная энергетика и ядерная бомба .


Эйнштейн был теоретиком. Эксперименты, которые должны были доказать правоту его теории, он оставлял другим. Многие из этих экспериментов было невозможно проделать до тех пор, пока не появились достаточно точные измерительные приборы.

Факты и события

  • Был произведен следующий эксперимент: самолет, на котором были установлены очень точные часы, взлетел и, облетев с большой скоростью вокруг Земли, опустился в той же точке. Часы, находившиеся на борту самолета, на ничтожную долю секунды отстали от часов, которые оставались на Земле.
  • Если в лифте, падающем с ускорением свободного падения, уронить шар, то шар не будет падать, а как бы зависнет в воздухе. Это происходит потому, что шар и лифт падают с одинаковой скоростью.
  • Эйнштейн доказал, что тяготение влияет на геометрические свойства пространства-времени, которое в свою очередь влияет на движение тел в этом пространстве. Так, два тела, начавшие движение параллельно друг другу, в конце концов встретятся в одной точке.

Искривляя время и пространство

Десятью годами позже, в 1915—1916 годах, Эйнштейн построил новую теорию гравитации, названную им общей теорией относительности . Он утверждал, что ускорение (изменение скорости) действует на тела так же, как и сила гравитации. Космонавт не может по своим ощущениям определить, притягивает ли его большая планета, или ракета начала тормозить.


Если космический корабль разгоняется до скорости, близкой к скорости света, то часы на нем замедляются. Чем быстрее движется корабль, тем медленнее идут часы.

Отличия ее от ньютоновской теории тяготения проявляются при изучении космических объектов с огромной массой, например планет или звезд. Эксперименты подтвердили искривление лучей света, проходящих вблизи тел с большой массой. В принципе возможно столь сильное гравитационное поле, что свет не сможет выйти за его пределы. Это явление получило название «черной дыры ». «Черные дыры», по-видимому, обнаружены в составе некоторых звездных систем.

Ньютон утверждал, что орбиты планет вокруг Солнца фиксированы. Теория Эйнштейна предсказывает медленный дополнительный поворот орбит планет, связанный с наличием гравитационного поля Солнца. Предсказание подтвердилось экспериментально. Это было поистине эпохальное открытие. В закон всемирного тяготения сэра Исаака Ньютона были внесены поправки.

Начало гонки вооружений

Работы Эйнштейна дали ключ ко многим тайнам природы. Они оказали влияние на развитие многих разделов физики, от физики элементарных частиц до астрономии - науки о строении Вселенной.

Эйнштейн в своей жизни занимался не только теорией. В 1914 году он стал директором института физики в Берлине. В 1933 году, когда к власти в Германии пришли нацисты, ему, как еврею, пришлось уехать из этой страны. Он переехал в США.

В 1939 году, несмотря на то что он был противником войны, Эйнштейн написал президенту Рузвельту письмо, в котором предупреждал его, что можно сделать бомбу, обладающую огромной разрушительной силой, и что фашистская Германия уже приступила к разработке такой бомбы. Президент отдал распоряжение начать работы. Это положило начало гонке вооружений.

На выступлении 27 апреля 1900 года в королевском институте Великобритании лорд Кельвин сказал: «Теоретическая физика представляет собой стройное и законченное здание. На ясном небе физики имеются всего лишь два небольших облачка – это постоянство скорости света и кривая интенсивности излучения в зависимости от длины волны. Я думаю, что эти два частных вопроса будут скоро разрешены и физикам XX века уже нечего будет делать.» Лорд Кельвин оказался абсолютно прав с указанием ключевых направлений исследований в физике, но не верно оценил их важность: родившиеся из них теория относительности и квантовая теория оказались бескрайними просторами для исследований, занимающих учёные умы вот уже на протяжении более сотни лет.

Так как не описывала гравитационное взаимодействие, Эйнштейн вскоре после её завершения приступил к разработке общей версии этой теории, за созданием которой он провёл 1907-1915 годы. Теория была прекрасной в своей простоте и согласованности с природными явлениями за исключением единственного момента: во времена составления теории Эйнштейном ещё не было известно об расширении Вселенной и даже о существовании других галактик, поэтому учёными того времени считалось что Вселенная существовала бесконечно долго и была стационарна. При этом из закона всемирного тяготения Ньютона следовало, что неподвижные звёзды должны были в какой-то момент просто быть стянуты в одну точку.

Не найдя для этого явления лучшего объяснения, Эйнштейн ввёл в свои уравнения , которая численно компенсировала и позволяла таким образом стационарной Вселенной существовать без нарушения законов физики. В последствии Эйнштейн стал считать введение космологической постоянной в свои уравнения своей самой большой ошибкой, так как она не была необходима для теории и ничем кроме выглядящей на тот момент стационарной Вселенной не подтверждалось. А в 1965 году было обнаружено реликтовое излучение, что означало что Вселенная имела начало и постоянная в уравнениях Эйнштейна оказалось и вовсе не нужна. Тем не менее космологическая постоянная всё-таки была найдена в 1998 году: по полученным телескопом «Хаббл» данным, далёкие галактики не тормозили свой разлёт в следствии притяжения гравитацией, а даже ускоряли свой разлёт.

Основы теории

Кроме основных постулатов специальной теории относительности, здесь добавилось и новое: механика Ньютона давала численную оценку гравитационного взаимодействия материальных тел, но не объясняла физику этого процесса. Эйнштейну же удалось описать это посредством искривления массивным телом 4-мерного пространства-времени: тело создаёт вокруг себя возмущение, в результате которого окружающие тела начинают двигаться по геодезическим линиям (примерами таких линий являются линии земной широты и долготы, которые для внутреннего наблюдателя кажутся прямыми линиями, но в реальности немного искривлены). Таким же образом откланяются и лучи света, что искажает видимую картину за массивным объектом. При удачном совпадении положений и масс объектов это приводит к (когда искривление пространства-времени выступает в роли огромной линзы, делающей источник далёкого света намного ярче). Если же параметры совпадают не идеально – это может приводить к образованию «креста Эйнштейна» или «круга Эйнштейна» на астрономических снимках далёких объектов.

Среди предсказаний теории также было гравитационное замедление времени, (которое при приближении к массивному объекту действовало на тело точно также, как и замедление времени в следствии ускорения), гравитационное (когда луч света, испущенный массивным телом, уходит в красную часть спектра в следствии потери им энергии на работу выхода из «гравитационного колодца»), а также гравитационные волны (возмущение пространства-времени, которое производит любое тело имеющее массу в процессе своего движения).

Статус теории

Первое подтверждение общей теории относительности было получено самим Эйнштейном в том же 1915 году, когда она и была опубликована: теория с абсолютной точностью описывала смещение перигелия Меркурия, которое до этого никак не могли объяснить при помощи ньютоновской механики. С того момента было открыто множество других явлений, которые предсказывались теорией, но на момент её публикации были слишком слабы чтобы их можно было засечь. Последним таким открытием на данный момент стало открытие гравитационных волн 14 сентября 2015 года.