Микробиология: конспект лекций Ткаченко Ксения Викторовна

4. Виды пластического обмена

4. Виды пластического обмена

Основными видами пластического обмена являются:

1) белковый;

2) углеводный;

3) липидный;

4) нуклеиновый.

Белковый обмен характеризуется катаболизмом и анаболизмом. В процессе катаболизма бактерии разлагают белки под действием протеаз с образованием пептидов. Под действием пептидаз из пептидов образуются аминокислоты.

Распад белков в аэробных условиях называется тлением, в анаэробных – гниением.

В результате распада аминокислот клетка получает ионы аммония, необходимые для формирования собственных аминокислот. Бактериальные клетки способны синтезировать все 20 аминокислот. Ведущими из них являются аланин, глютамин, аспарагин. Они включаются в процессы переаминирования и трансаминирования. В белковом обмене процессы синтеза преобладают над распадом, при этом происходит потребление энергии.

В углеводном обмене у бактерий катаболизм преобладает над анаболизмом. Сложные углеводы внешней среды могут расщеплять только те бактерии, которые выделяют ферменты – полисахаридазы. Полисахариды расщепляются до дисахаров, которые под действием олигосахаридаз распадаются до моносахаров, причем внутрь клетки может поступать только глюкоза. Часть ее идет на синтез собственных полисахаридов в клетке, другая часть подвергается дальнейшему расщеплению, который может идти по двум путям: по пути анаэробного распада углеводов – брожению (гликолизу) и в аэробных условиях – по пути горения.

В зависимости от конечных продуктов выделяют следующие виды брожения:

1) спиртовое (характерно для грибов);

2) пропионионово-кислое (характерно для клостридий, пропиони-бактерий);

3) молочнокислое (характерно для стрептококков);

4) маслянокислое (характерно для сарцин);

5) бутилденгликолевое (характерно для бацилл).

Наряду с основным анаэробным распадом (гликолизом) могут быть вспомогательные пути расщепления углеводов (пентозофосфатный, кетодезоксифосфоглюконатный и др.). Они отличаются ключевыми продуктами и реакциями.

Липидный обмен осуществляется с помощью ферментов – липопротеиназ, летициназ, липаз, фосфолипаз.

Липазы катализируют распад нейтральных жирных кислот, т. е. ответственны за отщепление этих кислот от глицерина. При распаде жирных кислот клетка запасает энергию. Конечным продуктом распада является ацетил-КоА.

Биосинтез липидов осуществляется за счет ацетилпереносящих белков. При этом ацетильный остаток переходит на глицерофосфат с образованием фосфатидных кислот, а они уже вступают в химические реакции с образованием сложных эфиров со спиртами. Эти превращения лежат в основе синтеза фосфолипидов.

Бактерии способны синтезировать как насыщенные, так и ненасыщенные жирные кислоты, но синтез последних более характерен для аэробов, так как требует кислорода.

Нуклеиновый обмен бактерий связан с генетическим обменом. Синтез нуклеиновых кислот имеет значение для процесса деления клетки. Синтез осуществляется с помощью ферментов: рестриктазы, ДНК-полимеразы, лигазы, ДНК-зависимой-РНК-полимеразы.

Рестриктазы вырезают участки ДНК, убирая нежелательные вставки, а лигазы обеспечивают сшивку фрагментов нуклеиновой кислоты. ДНК-полимеразы ответственны за репликацию дочерней ДНК по материнской. ДНК-зкависимые-РНК-полимеразы отвечают за транскрипцию, осуществляют построение РНК на матрице ДНК.

Из книги О происхождении видов путем естественного отбора или сохранении благоприятствуемых пород в борьбе за жизнь автора Дарвин Чарльз

Виды более крупных родов в каждой стране варьируют чаще, чем виды меньших родов. Если растения какой-нибудь страны, описанные в какой-либо «Флоре», разделить на две равные группы так, чтобы в одну из них вошли представители значительно крупных родов (т. е. родов, включающих

Из книги Здоровье Вашей собаки автора Баранов Анатолий

О медленном и постепенном появлении новых видов. – О различных скоростях их изменения. – Виды, однажды исчезнувшие, не появляются вновь. – Группы видов следуют в своем появлении и исчезновении тем же правилам, как и отдельные виды. Посмотрим теперь, согласуются ли

Из книги Лечение собак: Справочник ветеринара автора Аркадьева-Берлин Ника Германовна

Болезни обмена веществ Болезни, связанные с нарушением обмена веществ у собак, довольно многочисленны. Причина - нарушение генетической информации, в результате чего гены, ответственные за воспроизведение белков в организме, не обеспечивают нормального синтеза

Из книги Болезни собак (незаразные) автора Панышева Лидия Васильевна

Болезни обмена веществ Ожирение Помимо клиники этих заболеваний в данной главе приводятся способы симптоматического лечения увеличенных лимфоузлов и критических состояний, связанных с:а) лихорадкой;б) гипотермией;в) истощением.Причиной этого заболевания является

Из книги Возрастная анатомия и физиология автора Антонова Ольга Александровна

Болезни на почве нарушения обмена веществ Л. В. Панашева Обмен веществ представляет собой два противоположных процесса: ассимиляцию и диссимиляцию. Ассимиляция - это воссоздание веществ, необходимых для образования и обновления клеток и тканей, - синтез живой

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

Тема 10. ВОЗРАСТНЫЕ ОСОБЕННОСТИ ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ 10.1. Характеристика обменных процессов Обмен веществ и энергии – основа процессов жизнедеятельности организма. В организме человека, в его органах, тканях, клетках идет непрерывный процесс синтеза, т. е.

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

10.2. Основные формы обмена веществ в организме

Из книги автора

10.3. Возрастные особенности энергетического обмена Даже в условиях полного покоя человек расходует некоторое количество энергии: в организме непрерывно тратится энергия на физиологические процессы, которые не останавливаются ни на минуту. Минимальный для организма

Из книги автора

Гуморальные влияния на различные этапы обмена углеводов Рассмотрим превращения углеводов, поступающих в организм с пищей (рис. 2.11). Рис. 2.11. Схема превращения углеводов в организме (Е означает «энергия»). Поступление глюкозы в кровь происходит в результате того, что в

Из книги автора

Уровни изучения обмена веществ Уровни изучения обмена веществ:1. Целый организм.2. Изолированные органы (перфузируемые).3. Срезы тканей.4. Культуры клеток.5. Гомогенаты тканей.6. Изолированные клеточные органеллы.7. Молекулярный уровень (очищенные ферменты, рецепторы и

Из книги автора

Нарушения энергетического обмена Все живые клетки постоянно нуждаются в АТФ для осуществления различных видов деятельности. Нарушение какого-либо этапа метаболизма, приводящие к прекращению синтеза АТФ, гибельны для клетки. Ткани с высокими энергетическими

Из книги автора

Регуляция обмена ионов кальция и фосфатов Кальций и фосфаты являются структурными компонентами костной ткани. Ионы кальция участвуют в свертывании крови, мышечном сокращении, проведении нервного импульса, влияют на работу ионных насосов, способствуют секреции

Из книги автора

Нарушения обмена гликогена Гликогеновые болезни – группа наследственных нарушений в основе которых лежит снижение или отсутствие активности ферментов, катализирующих реакции синтеза или распада гликогена. К данным нарушениям относятся гликогенозы и

Из книги автора

Пути обмена аминокислот в тканях Аминокислоты – это бифункциональные соединения, содержащие аминную и карбоксильную группу. Реакции по этим группам являются общими для различных аминокислот. К ним относят:1. по аминной группе – реакции дезаминирования и

Из книги автора

Нарушение обмена фенилаланина и тирозина ФенилкетонурияВ печени здоровых людей небольшая часть фенилаланина (до 10%) превращается в фениллактат и фенилацетилглутамин. Этот путь катаболизма фенилаланина становится главным при нарушении основного пути – превращения в

Из книги автора

Нарушения обмена нуклеотидов КсантинурияКсантинурия – наследственная энзимопатия, связанная с дефектом ксантиноксидазы, что приводит к нарушению катаболизма пуринов до мочевой кислоты. В плазме крови и моче может наблюдаться 10-ти кратное снижение уровня мочевой

Обмен веществ краткая теория.

Обмен веществ (метаболизм)

Пластический обмен (анаболизм, ассимиляция)

Энергетический обмен (катаболизм, диссимиляция)

При пластическом обмене из простых веществ образуются (синтезируются) более сложные.

  • При фотосинтезе из углекислого газа и воды синтезируется глюкоза.

  • В клетках человека из простых органических веществ синтезируются сложные органические вещества, например, из аминокислот – белки, из глюкозы – гликоген.

Энергетический обмен (распад, дыхание) – это когда сложные вещества распадаются (окисляются) до более простых, и при этом выделяется энергия , необходимая для жизнедеятельности

  • Пластический обмен обеспечивает клетку сложными органическими веществами (белками, жирами, углеводами, нуклеиновыми кислотами), в том числе белками-ферментами для энергетического обмена.

  • Энергетический обмен обеспечивает клетку энергией. При выполнении работы (умственной, мышечной и т.п.) энергетический обмен усиливается.

АТФ – универсальное энергетическое вещество клетки (универсальный аккумулятор энергии). Образуется в процессе энергетического обмена (окисления органических веществ).

  • При пластическом обмене все вещества синтезируются, а АТФ – распадается. При этом расходуется энергия АТФ (энергия АТФ переходит в энергию химических связей сложных веществ, запасается в этих веществах).

  • При энергетическом обмене все вещества распадаются или окисляются, а АТФ – синтезируется. При этом энергия химических связей распавшихся сложных веществ переходит в энергию АТФ , энергия запасается в АТФ .

Этапы энергетического обмена.

  • Подготовительный этап.
    В пищеварительной системе (в лизосомах у одноклеточных животных) сложные органические вещества распадаются до более простых (белки до аминокислот, крахмал до глюкозы, жиры до глицерина и жирных кислот и т.п.). При этом выделяется энергия, которая рассеивается в форме тепла.

  • Бескислородный этап (гликолиз – бескислородное окисление глюкозы)
    Происходит в цитоплазме , без участия кислорода (анаэробно). Глюкоза окисляется до двух молекул пировиноградной кислоты, при этом 60% энергии рассеивается в виде тепла, а 40% энергии расходуется на синтез 2 молекул АТФ.

  • Кислородный этап.
    Происходит в митохондриях. ПВК окисляется кислородом до углекислого газа, также образуется вода и вся выделяющаяся энергия идет на синтез 36 молекул АТФ.

  • Брожение и кислородное дыхание

  • Брожение состоит из гликолиза (2 АТФ) и превращения ПВК в молочную кислоту или спирт + углекислый газ (0 АТФ). Итого 2 АТФ.

  • Кислородное дыхание состоит из гликолиза (2 АТФ) и окисления ПВК в митохондриях (36 АТФ). Итого 38 АТФ.
Тренировочные тесты

Обмен веществ и энергии. Стадии энергетического обмена.


А) более сложные углеводы синтезируются из менее сложных
Б) жиры превращаются в глицерин и жирные кислоты


А) ферментами
Б) молекулами белка
В) молекулами АТФ
Г) кислородом

3. Значение энергетического обмена в клеточном метаболизме состоит в том , что он обеспечивает реакции синтеза
А) ферментами
Б) витаминами
В) молекулами АТФ
Г) нуклеиновыми кислотами

В)расщепление глюкозы до ПВК и синтез 2 молекул АТФ;

Г)поступление ПВК в митохондрии;

Д)окисление ПВК и синтез 36 молекул АТФ

13.Установите соответствие между характеристикой и этапом энергетического обмена

Изменив немного тренировочные тесты можно легко составить проверочную работу.

Обмен веществ и энергии. Стадии энергетического обмена. 1 вариант.

1. В процессе пластического обмена
А) более сложные углеводы синтезируются из менее сложных
Б) жиры превращаются в глицерин и жирные кислоты
В) белки окисляются с образованием углекислого газа, воды, азотсодержащих веществ
Г) происходит освобождение энергии и синтез АТФ

2. Пластический обмен в клетках животных не может происходить без энергетического, так как энергетический обмен обеспечивает клетку
А) ферментами
Б) молекулами белка
В) молекулами АТФ
Г) кислородом

3. Значение энергетического обмена в клеточном метаболизме состоит в том, что он обеспечивает реакции синтеза
А) ферментами
Б) витаминами
В) молекулами АТФ
Г) нуклеиновыми кислотами

4. В процессе энергетического обмена, в отличие от пластического, происходит
А) расходование энергии, заключенной в молекулах АТФ
Б) запасание энергии в макроэргических связях молекул АТФ
В) обеспечение клеток белками и липидами
Г) обеспечение клеток углеводами и нуклеиновыми кислотами

5. При умственной работе в клетках мозга человека усиливается
А) образование гликогена
Б) накопление инсулина
В) энергетический обмен
Г) пластический обмен

6. Найдите соответствие

7. Каково значение пластического обмена в жизни живых организмов? Приведите примеры процессов.

Обмен веществ и энергии. Стадии энергетического обмена. 2 вариант.
1. Пластический обмен в клетке характеризуется
А) распадом органических веществ с освобождением энергии
Б) образованием органических веществ с накоплением в них энергии
В) всасыванием питательных веществ в кровь
Г) перевариванием пищи с образованием растворимых веществ

2. В результате кислородного этапа энергетического обмена в клетках синтезируются молекулы
А) белков
Б) глюкозы
В) АТФ
Г) ферментов

3. В процессе пластического обмена в клетках синтезируются молекулы
А) белков
Б) воды
В) АТФ
Г) неорганических веществ

4. В чем проявляется взаимосвязь пластического и энергетического обмена
А) пластический обмен поставляет органические вещества для энергетического
Б) энергетический обмен поставляет кислород для пластического
В) пластический обмен поставляет минеральные вещества для энергетического
Г) пластический обмен поставляет молекулы АТФ для энергетического

5. Какие реакции обмена веществ в клетке сопровождаются затратами энергии?
А) подготовительного этапа энергетического обмена
Б) молочнокислого брожения
В) окисления органических веществ
Г) пластического обмена

6.Установите соответствие между характеристикой и этапом энергетического обмена

7. Какое значение имеет энергетический обмен для пластического? Почему энергетический обмен протекает в 3 этапа?

В клетках постоянно осуществляются обмен веществ (метаболизм) - многообразные химические превращения, обеспечивающие их рост, жизнедеятельность, постоянный контакт и обмен с окружающей средой. Благодаря обмену веществ белки, жиры, углеводы и другие вещества, входящие в состав клетки, непрерывно расщепляются и синтезируются.

Обмен веществ складывается из двух взаимосвязанных, одновременно протекающих в организме процессов - пластического и энергетического обменов .

Реакции пластичесРеакции пластического и энергетического обменов взаимосвязаны и в своем единстве составляют обмен веществ и превращение энергии в каждой клетке и в организме в целом.

Пластический обмен

Суть пластического обмена заключается в том, что из простых веществ, поступающих в клетку извне, образуются вещества клетки. Рассмотрим этот процесс на примере образования важнейших органических соединений клетки - белков.

В синтезе белка - этом сложном, многоступенчатом процессе -участвуют ДНК, мРНК, тРНК, рибосомы, АТФ и разнообразные ферменты. Начальный этап белкового синтеза - образование полипептидной цепи из отдельных аминокислот, расположенных в строго определенной последовательности. Главная роль в определении порядка расположения аминокислот, т.е. первичной структуры белка, принадлежит молекулам ДНК. Последовательность аминокислот в белках определена последовательностью нуклеотидов в молекуле ДНК.

Синтез белка осуществляется на рибосомах, а информация о структуре белка зашифрована в ДНК, расположенной в ядре. Для того чтобы синтезировался белок, информация о последовательности аминокислот в его первичной структуре должна быть доставлена к рибосомам. Этот процесс включает два этапа: транскрипцию и трансляцию.

Транскрипция (буквально - переписывание) протекает как реакция матричного синтеза. На цепи ДНК, как на матрице, по принципу комплементарности синтезируется цепь иРНК, которая по своей нуклеотидной последовательности точно копирует (комплементарна) полинуклеотидной цепи ДНК, причем тимину в ДНК соответствует урацил в РНК. Информационная РНК - это копия не всей молекулы ДНК, а только части ее - одного гена, несущего информацию о структуре белка, сборку которого необходимо произвести.

Начинается следующий этап биосинтеза - трансляция: сборка полипептидных цепей на матрице иРНК. По мере сборки белковой молекулы рибосома перемещается по молекуле иРНК, причем перемещается не плавно, а прерывисто, триплет за триплетом. По мере перемещения рибосомы по молекуле мРНК сюда же с помощью тРНК доставляются аминокислоты, соответствующие триплетам мРНК. К каждому триплету, на котором останавливается в своем передвижении по нитевидной молекуле мРНК рибосома, строго комплементарно присоединяется тРНК. При этом аминокислота, связанная с тРНК, оказывается у активного центра рибосомы. Здесь специальные ферменты рибосомы отщепляют аминокислоту от тРНК и присоединяют к предыдущей аминокислоте. После установки первой аминокислоты рибосома передвигается на один триплет, а тРНК, оставив аминокислоту, мигрирует в цитоплазму за следующей аминокислотой. С помощью такого механизма шаг за шагом наращивается белковая цепь. Аминокислоты соединяются в ней в строгом соответствии с расположением кодирующих триплетов в цепи молекулы мРНК. Чем дальше продвинулась рибосома по иРНК, тем больший отрезок белковой молекулы «собран». Когда рибосома достигнет противоположного конца иРНК, синтез окончен. Нитевидная молекула белка отделяется от рибосомы. Молекула мРНК может использоваться для синтеза полипептидов многократно, как и рибосома. На одной молекуле иРНК может размещаться несколько рибосом (полирибосома). Их число определяется длиной мРНК.


Биосинтез белков - сложный многоступенчатый процесс, каждое звено которого катализируется определенными ферментами и снабжается энергией за счет молекул АТФ.

Энергетический обмен

Процессом, противоположным синтезу, является диссимиляция - совокупность реакций расщепления. В результате диссимиляции освобождается энергия, заключенная в химических связях пищевых веществ. Эта энергия используется клеткой для осуществления различной работы, в том числе и ассимиляции. При расщеплении пищевых веществ энергия выделяется поэтапно при участии ряда ферментов. В энергетическом обмене обычно выделяют три этапа.

Первый этап - подготовительный. На этом этапе сложные высокомолекулярные органические соединения расщепляются ферментативно, путем гидролиза, до более простых соединений - мономеров, из которых они состоят: белки - до аминокислот, углеводы - до моносахаридов (глюкозы), нуклеиновые кислоты - до нуклеотидов и т.д. На данном этапе выделяется небольшое количество энергии, которая рассеивается в виде теплоты.

Второй этап - бескислородный, или анаэробный. Он называется также анаэробным дыханием (гликолизом) или брожением. Гликолиз происходит в клетках животных. Он характеризуется ступенчатостью, участием более десятка различных ферментов и образованием большого числа промежуточных продуктов. Например, в мышцах в результате анаэробного дыхания шестиуглеродная молекула глюкозы распадается на 2 молекулы пировиноградной кислоты (С3Н403), которые затем восстанавливаются в молочную кислоту (С3Н603). В этом процессе принимают участие фосфорная кислота и АДФ. Суммарное выражение процесса следующее:

С6Н1 206+ 2Н3Р04+ 2АДФ -» 2С3Н603+ 2АТФ + 2Н20.

В ходе расщепления выделяется около 200 кДж энергии. Часть этой энергии (около 80 кДж) расходуется на синтез двух молекул АТФ, благодаря чему 40% энергии сохраняется в виде химической связи в молекуле АТФ. Оставшиеся 120 кДж энергии (более 60 %) рассеиваются в виде теплоты. Процесс этот малоэффективный.

При спиртовом брожении из одной молекулы глюкозы в результате многоступенчатого процесса в конечном счете образуются две молекулы этилового спирта, две молекулы С02

С6Н1206+ 2Н3Р04+ 2АДФ -> 2С2Н5ОН ++ 2С02+ 2АТФ + 2Н20.

В этом процессе выход энергии (АТФ) такой же, как и при гликолизе. Процесс брожения - источник энергии для анаэробных организмов.

Третий этап - кислородный, или аэробное дыхание, или кислородное расщепление. На этой стадии энергетического обмена происходит последующее расщепление образовавшихся на предыдущем этапе органических веществ путем окисления их кислородом воздуха до простых неорганических, являющихся конечными продуктами - СО2и Н20. Кислородное дыхание сопровождается выделением большого количества энергии (около 2600 кДж) и аккумуляцией ее в молекулах АТФ.

В суммарном виде уравнение аэробного дыхания выглядит так:

2С3Н603+ 602+ 36АДФ -» 6С02+ 6Н20 + 36АТФ + 36Н20.

Таким образом, при окислении двух молекул молочной кислоты за счет выделившейся энергии образуется 36 энергоемких молекул АТФ. Следовательно, основную роль в обеспечении клеткиэнергией играет аэробное дыхание.

Пластический обмен (анаболизм, ассимиляция) - совокупность всех реакций биологического синтеза. Эти вещества идут на построение органоидов клетки и создание новых клеток при делении.Пластический обмен всегда сопровождается поглощением энергии.

Энергетический обмен (катаболизм, диссимиляция) - совокупность реакций расщепления сложных высокомолекулярных органических веществ - белков, нуклеиновых кислот, жиров, углеводов на более простые, низкомолекулярные. При этом выделяется энергия, заключенная в химических связях крупных органических молекул. Освобожденная энергия запасается в форме богатых энергией фосфатных связей АТФ.

Организм можно определить как физико-химическую систему, существующую в окружающей среде в стационарном состоянии.

Впервые мысль о том, что постоянство внутренней среды обеспечивает оптимальные условия для жизни и размножения организмов, была высказана в 1857 г. французским физиологом Клодом Бернаром. В 1932 г. американский физиолог Уолтер Кэннон ввел термин гомеостаз (от греч. homoios - тот же, stasis - состояние) для определения механизмов, поддерживающих «постоянство внутренней среды». Функция гомеостатических механизмов состоит в том, что они поддерживают стабильность клеточного окружения и тем самым обеспечивают независимость организма от внешней среды - в той мере, в какой эти механизмы эффективны. Независимость от условий окружающей среды является показателем жизненного успеха, и на этом основании млекопитающих следует рассматривать как преуспевающий класс: они способны поддерживать относительно постоянный уровень активности, несмотря на колебания внешних условий.

Для того, чтобы обеспечить более или менее стабильную активность организма, необходима регуляция на всех уровнях - от молекулярного до популяционного. Это требует использования различных биохимических, физиологических и поведенческих механизмов, наиболее соответствующих уровню сложности и образу жизни данного вида, и во всех этих отношениях млекопитающие, лучше вооружены, чем простейшие.

Внутреннюю среду организма и ее регуляцию можно рассматривать на двух уровнях - на уровне клеток и на уровне тканей.

С помощью дыхательной и кровеносной систем регулируются постоянный уровень кислорода, углекислого газа и метаболитов во внутренней среде организма.

Терморегуляция

Тепло - форма энергии, имеющая очень важное значение для поддержания живых систем. Все живые системы нуждаются в непрерывном снабжении теплом для предотвращением их деградации и гибели. Главным источником тепла для всех живых существ служит солнечная энергия. Солнечная радиация превращается в экзогенный (находящийся вне организма) источник тепла во всех случаях, когда она падает на организм и им поглощается. Сила и характер воздействия солнечного излучения зависят от географического положения и являются важными факторами, определяющими климат региона. В свою очередь климат определяет наличие и обилие видов растений и животных в данной местности.

Все животные получают тепло из двух источников - непосредственно из внешней среды и из химических субстратов, подвергающихся расщеплению в клетках. Птицы и млекопитающие способны поддерживать достаточно постоянную температуру тела независимо от окружающей среды. Их называют гомойотермными , или теплокровными. В отличие от них, все беспозвоночные и низшие позвоночные являются пойкилотермными, так как они не могут сохранять постоянную температуру тела.. Теплокровные животные относительно мало зависят от внешних источников тепла, так как благодаря высокой интенсивности обмена у них вырабатывается достаточное количество тепла, которое может сохраняться. Поскольку эти животные существуют за счет внутренних источников тепла, их называют также эндотермными.

ВСПОМНИТЕ

Обмен веществ - это совокупность протекающих в живых организмах химических превращений, обеспечивающих их рост, развитие, процессы жизнедеятельности, воспроизведение потомства, активное взаимодействие с окружающей средой.

Вопрос 2. Каковы особенности обмена веществ у животных?

Животные являются гетеротрофами и должны получать органические вещества из окружающей среды. Во время образования органических веществ из неорганических растения выделяют в окружающую среду кислород. Большинству животных этот кислород нужен для того, чтобы высвободить энергию, накопленную в органических веществах.

Вопрос 3. Какие белки являются неполноценными?

Неполноценные белки содержат недостаточное количество одной или нескольких аминокислот.

ВОПРОСЫ К ПАРАГРАФУ

Вопрос 1. Что такое обмен веществ?

Обмен веществ - обязательное условие жизни любого организма. Обмен веществ обеспечивает взаимодействие живого организма с окружающей его средой, процессы жизнедеятельности, рост, развитие.

Вопрос 2. Что представляют собой пластический и энергетический обмен и где они происходят?

Под пластическим обменом понимают такие процессы, в ходе которых в клетках создаются новые соединения и новые структуры, характерные для данного организма. Под энергетическим обменом понимают такие превращения энергии, в ходе которых в результате биологического окисления выделяется энергия, необходимая для жизнедеятельности клеток, тканей и всего организма в целом. Пластический и энергетический обмен происходит в клетках.

Вопрос 3. Какое значение для обмена веществ имеет АТФ?

АТФ является аккумулятором энергии. Если в клетках возникает потребность в энергии, то АТФ распадается. При этом выделяется энергия, за счёт которой и протекают различные процессы жизнедеятельности. Организм человека потребляет очень много энергии, так как работа мышц, почек, мозга и любых других систем требует постоянных её затрат.

Вопрос 4. Какие единицы используют для обозначения энергии, запасённой в питательных веществах, и каковы особенности их взаимного пересчёта?

Различные питательные вещества при окислении выделяют разное количество энергии, единицей измерения которой является джоуль (Дж).

Вопрос 5.Охарактеризуйте особенности обмена основных веществ в организме человека.

Обмен белков. Белки пищи, распадаясь в желудочно-кишечном тракте до отдельных аминокислот, всасываются в тонком кишечнике в кровяное русло и разносятся к отдельным клеткам организма, в которых и происходит синтез новых белков, свойственных человеку. Распадаясь, аминокислоты образуют воду, углекислый газ и ядовитый аммиак. В клетках печени аммиак превращается в мочевину. Вода и мочевина выводятся из организма в составе мочи, а углекислый газ выдыхается через лёгкие.

Обмен углеводов. В организм углеводы поступают в виде различных соединений: крахмал, гликоген, сахароза или фруктоза и др. Всасываются углеводы в виде глюкозы ворсинками тонкого кишечника и попадают в кровь.

Обмен жиров. Жиры являются соединениями, включающими в себя жирные кислоты и глицерин. Под действием ферментов поджелудочной железы и тонкого кишечника, а также при участии желчи жиры перевариваются и всасываются в лимфатические капилляры ворсинок тонкого кишечника и далее с током лимфы попадают в кровь.

1. Изучив текст и содержание таблиц пара графа, подсчитайте, какое количество кило калорий вы получаете за день.

2. Составьте примерное меню, калорийность которого соответствовала бы вашим дневным нагрузкам.

Завтрак: Колбаса (100 г.) с рисом (150 г.) запеченная в яйце (50 г.) кусок хлеба (150 г.) с маслом (20 г.) чай с сахаром (10 г.)

Обед: Суп из картофеля (90 г.) с морковью (20 г) и луком (30 г.) курица (100 г.), запеченная с капустой (100 г.) в масле (5 г.) чай с сахаром (10 г.)

Полдник: Стакан молока (200 г.) и яблоко (200 г.)

Ужин: Рыба (100 г.) запечённая в масле (10г.) с луком (50 г.) жареный картофель (200 г.) чёрный хлеб (100 г.) чай с сахаром (10 г.)

ПОДУМАЙТЕ!

Как можно доказать, что энергия в организме человека видоизменяется?

Обмен веществ и энергии - это взаимосвязанные процессы, разделение которых связано лишь с удобством изучения. Ни один из этих процессов в отдельности не существует. При окислении энергия химических связей, содержащаяся в питательных веществах, освобождается и используется организмом. За счет перехода одних видов энергии в другие и поддерживаются все жизненные функции организма. При этом общее количество энергии не изменяется. Соотношение между количеством энергии, поступающей с пищей, и величиной энергетических затрат называется энергетическим балансом.

Сказанное можно проиллюстрировать на примере деятельности сердца. Сердце совершает огромную работу. Каждый час оно выбрасывает в аорту около 300 л крови. Эта работа совершается за счет сокращения сердечной мышцы, в которой при этом протекают интенсивные окислительные процессы. Благодаря освобождающейся энергии обеспечивается механическое сокращение мышц, и в конечном счете вся энергия переходит в тепловую, которая рассеивается в организме и отдается им в окружающее пространство. Аналогичные процессы идут в каждом органе человеческого тела. И в каждом случае в конечном итоге химическая, электрическая, механическая и другие виды энергии трансформируются в тепловую и рассеиваются во внешнюю среду.

Метаболизм включает пластический и энергетический обмен. В процессе распада сложных веществ образуется энергия, которая тратится на построение и работу всего организма (рост тканей, сокращение мышц, поддержание тепла). Оба процесса тесно взаимосвязаны и неотделимы друг от друга.

Процесс обмена

Взаимосвязь между средой и живым организмом осуществляется посредством метаболизма или обмена веществ. Для жизнедеятельности необходимо, чтобы внутрь организма с пищей и воздухом поступали органические и неорганические вещества - белки, жиры, углеводы, соли, кислород, витамины. Все эти вещества участвуют в ряде химических реакций. В таблице энергетического и пластического обмена описаны особенности двух процессов.

Рис. 1. Пластический и энергетический обмен.

Кратко общий процесс метаболизма можно разделить на три этапа:

  • ферментативный (подготовительный) - при участии ферментов расщепляются поступившие из внешней среды белки, жиры, углеводы до более простых соединений;
  • метаболический (основной) - расщеплённые вещества переносятся током крови к каждой клетке организма, где происходит образование энергии в виде молекул АТФ и синтез веществ (клеточный метаболизм);
  • выделительный (заключительный) - продукты распада (углекислый газ, вода, аммиак) выводятся из организма посредством крови через выделительные органы и лёгкие.

Рис. 2. Процесс метаболизма.

Показателем здоровья является баланс между пластическим и энергетическим обменом. В период интенсивного роста (например, подростковый период) может наблюдаться преобладание анаболизма над катаболизмом.

Каждый день в организме происходят сложные процессы пластического и энергетического обмена. Чтобы организм смог использовать белки, жиры, углеводы, они должны пройти сложный путь. В таблице описаны процессы и функции веществ.

Виды обмена

Процессы

Значение

Белковый

Катаболизм - расщепление до аминокислот, анаболизм - синтез специализированных белков в цитоплазме клетки

Белки входят в состав ферментов, гормонов, антител. Являются основным строительным материалом организма. Конечными продуктами расщепления аминокислот являются вода, углекислый газ, аммиак

Углеводный

Катаболизм - распад гликогена (гликогенолиз), а затем глюкозы (гликолиз). Анаболизм - синтез гликогена (гликогеногенез)

Глюкоза является главным источником энергии, при избытке запасается в виде гликогена. Регулирует нормальную работу мозга. Конечные продукты расщепления - углекислый газ, вода

Катаболизм - распад до жирных кислот и глицерина (липолиз), анаболизм - образование жирных кислот (липогенез)

Жиры являются источником энергии. Входят в состав клеточных мембран. Конечные продукты распада - углекислый газ, вода

Рис. 3. Обмен белков, жиров, углеводов.

Важную роль в метаболизме играют витамины - органические соединения, участвующие во многих химических реакциях организма. Они являются катализаторами, антиоксидантами, способствуют транспортировке веществ в клетку и образованию сигнальных молекул, реагирующих на изменение окружающей среды.

ТОП-4 статьи которые читают вместе с этой

Что мы узнали?

Из темы урока узнали о ходе метаболизма, чем пластический обмен отличается от энергетического. При энергетическом обмене происходит расщепление (окисление) сложных веществ до более простых с высвобождением энергии. При пластическом обмене образовавшиеся вещества вступают в реакции с затратой энергии для образования сложных веществ, необходимых организму. Синтезируемые вещества могут запасаться в виде жиров и гликогена, а при недостатке энергии - расщепляться.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 262.